
File Handling in Python

Files
• Files are named locations on disk to store related information.

They are used to permanently store data in a non-volatile
memory (e.g. hard disk).

• Since Random Access Memory (RAM) is volatile (which loses
its data when the computer is turned off), we use files for
future use of the data by permanently storing them.

• When we want to read from or write to a file, we need to
open it first. When we are done, it needs to be closed so that
the resources that are tied with the file are freed.

• Hence, in Python, a file operation takes place in the following
order:
– Open a file

– Read or write (perform operation)

– Close the file

Text Files and Binary Files

Types Of File in Python

• There are two types of files in Python and
each of them are explained below in detail
with examples for your easy understanding.
They are:

• Binary file

• Text file

Binary files in Python
• All binary files follow a specific format. We can

open some binary files in the normal text editor
but we can’t read the content present inside the
file. That’s because all the binary files will be
encoded in the binary format, which can be
understood only by a computer or machine.

• For handling such binary files we need a specific
type of software to open it.

• For Example, You need Microsoft word software
to open .doc binary files. Likewise, you need a pdf
reader software to open .pdf binary files and you
need a photo editor software to read the image
files and so on.

Binary files in Python (cont…1)

• Most of the files that we see in our computer
system are called binary files.

• Example:

• Document files: .pdf, .doc, .xls etc.

• Image files: .png, .jpg, .gif, .bmp etc.

• Video files: .mp4, .3gp, .mkv, .avi etc.

• Audio files: .mp3, .wav, .mka, .aac etc.

• Database files: .mdb, .accde, .frm, .sqlite etc.

• Archive files: .zip, .rar, .iso, .7z etc.

• Executable files: .exe, .dll, .class etc.

Text files in Python

• A text file is usually considered as sequence of
lines. Line is a sequence of characters (ASCII),
stored on permanent storage media. Although
default character coding in python is ASCII but
supports Unicode as well.

• in text file, each line is terminated by a special
character, known as End of Line (EOL). From
strings we know that \n is newline character.

• at the lowest level, text file is collection of bytes.
Text files are stored in human readable form.

• they can also be created using any text editor.

Text files in Python (Cont…1)

• Text files don’t have any specific encoding and
it can be opened in normal text editor itself.

• Example:

• Web standards: html, XML, CSS, JSON etc.

• Source code: c, app, js, py, java etc.

• Documents: txt, tex, RTF etc.

• Tabular data: csv, tsv etc.

• Configuration: ini, cfg, reg etc.

Opening or Creating a New File in Python
• The method open() is used to open an existing file or

creating a new file. If the complete directory is not given
then the file will be created in the directory in which the
python file is stored. The syntax for using open() method
is given below.
– Syntax:

– file_object = open(file_name, “Access Mode”, Buffering)

• The open method returns file object which can be
stored in the name file_object (file-handle).

• File name is a unique name in a directory. The open()
function will create the file with the specified name if it
is not already exists otherwise it will open the already
existing file.

Opening Files in Python (cont…1)
• The access mode

it is the string which tells in what mode the file should
be opened for operations. There are three different
access modes are available in python.

• Reading: Reading mode is crated only for reading the
file. The pointer will be at the beginning of the file.

• Writing: Writing mode is used for overwriting the
information on existing file.

• Append: Append mode is same as the writing mode.
Instead of over writing the information this mode
append the information at the end.

• Below is the list of representation of various access
modes in python.

Opening Files in Python (cont…2)
Access modes in Text Files

• ‘r' – Read Mode: Read mode is used only to read data
from the file.

• ‘w' – Write Mode: This mode is used when you want to
write data into the file or modify it. Remember write
mode overwrites the data present in the file.

• ‘a' – Append Mode: Append mode is used to append
data to the file. Remember data will be appended at
the end of the file pointer.

• ‘r+' – Read or Write Mode: This mode is used when we
want to write or read the data from the same file.

• ‘a+' – Append or Read Mode: This mode is used when
we want to read data from the file or append the data
into the same file.

Opening Files in Python (cont…3)
Access modes in Binary Files

• ‘wb’ – Open a file for write only mode in the
binary format.

• ‘rb’ – Open a file for the read-only mode in the
binary format.

• ‘ab’ – Open a file for appending only mode in the
binary format.

• ‘rb+’ – Open a file for read and write only mode
in the binary format.

• ‘ab+’ – Open a file for appending and read-only
mode in the binary format.

Opening Files in Python (cont…4)
What is Buffering ?

• Buffering is the process of storing a chunk of a
file in a temporary memory until the file loads
completely. In python there are different
values can be given. If the buffering is set to 0
, then the buffering is off. The buffering will be
set to 1 when we need to buffer the file.

Opening Files in Python (cont…5)
Examples Opening a file:

open file in current directory

• f = open("test.txt“, “r”)

specifying full path

• f = open(r“D:\temp\data.txt“, “r”)
– –raw string

• f = open(“D:\\temp\\data.txt“, “r”)
– -absolute path

Closing Files in Python
• After processing the content in a file, the file must

be saved and closed. To do this we can use
another method close() for closing the file. This is
an important method to be remembered while
handling files in python.

• Syntax: file_object.close()

string = "This is a String in Python"
my_file = open(my_file_name.txt,"w+",1)
my_file.write(string)
my_file.close()
print(my_file.closed)

Reading Information in the File
• In order to read a file in python, we must open

the file in read mode.

• There are three ways in which we can read the
files in python.

– read([n])

– readline([n])

– readlines() – all lines returned to a list

• Here, n is the number of bytes to be read.

Reading Information in the File (cont…1)

Example 1:
my_file = open(“C:/Documents/Python/test.txt”, “r”)
print(my_file.read(5))

Output:
Hello

•Here we are opening the file test.txt in a read-only
mode and are reading only the first 5 characters of
the file using the my_file.read(5) method.

Reading Information in the File (cont…2)

Example 2:
my_file = open(“C:/Documents/Python/test.txt”, “r”)
print(my_file.read())
Output:
Hello World
Hello Python
Good Morning

Here we have not provided any argument inside
the read() function. Hence it will read all the
content present inside the file.

Reading Information in the File (cont…3)

Example 3:
my_file = open(“C:/Documents/Python/test.txt”, “r”)
print(my_file.readline(2))

Output:
He

This function returns the first 2 characters of the
next line.

Reading Information in the File (cont…4)

Example 4:
my_file = open(“C:/Documents/Python/test.txt”, “r”)
print(my_file.readline())

Output:
Hello World

Using this function we can read the content of
the file on a line by line basis.

Reading Information in the File (cont…5)

Example 5:
my_file = open(“C:/Documents/Python/test.txt”, “r”)
print(my_file.readlines())

Output:
*‘Hello World\n’, ‘Hello Python\n’, ‘Good Morning’+

Here we are reading all the lines present inside
the text file including the newline characters.

Reading Information in the File (cont…6)

Reading a specific line from a File
line_number = 4
fo = open(“C:/Documents/Python/test.txt”, ’r’)
currentline = 1
for line in fo:

if(currentline == line_number):
print(line)
break

currentline = currentline +1
Output:
How are You

In the above example, we are trying to read only the
4th line from the ‘test.txt’ file using a “for loop”.

Reading Information in the File (cont…7)

Reading the entire file at once
filename = “C:/Documents/Python/test.txt”
filehandle = open(filename, ‘r’)
filedata = filehandle.read()
print(filedata)

Output:
Hello World
Hello Python
Good Morning
How are You

Write to a Python File
• In order to write data into a file, we must open the file in

write mode.
• We need to be very careful while writing data into the file

as it overwrites the content present inside the file that you
are writing, and all the previous data will be erased.

• We have two methods for writing data into a file as shown
below.

– write(string)
– writelines(list)

• Example 1:
my_file = open(“C:/Documents/Python/test.txt”, “w”)
my_file.write(“Hello World”)

The above code writes the String ‘Hello World’ into the ‘test.txt’
file.

Write to a Python File (cont…1)

Example 2:
my_file = open(“C:/Documents/Python/test.txt”, “w”)
my_file.write(“Hello World\n”)
my_file.write(“Hello Python”)

•The first line will be ‘Hello World’ and as we have mentioned \n character, the
cursor will move to the next line of the file and then write ‘Hello Python’.
•Remember if we don’t mention \n character, then the data will be written
continuously in the text file like ‘Hello WorldHelloPython’

Example 3:
fruits = *“Apple\n”, “Orange\n”, “Grapes\n”, “Watermelon”+
my_file = open(“C:/Documents/Python/test.txt”, “w”)
my_file.writelines(fruits)

The above code writes a list of data into the ‘test.txt’ file simultaneously.

Append in a Python File
To append data into a file we must open the file in
‘a+’ mode so that we will have access to both
the append as well as write modes.

Example 1:
my_file = open(“C:/Documents/Python/test.txt”, “a+”)
my_file.write (“Strawberry”)

The above code appends the string ‘Strawberry’ at the end of the ‘test.txt’ file

Example 2:
my_file = open(“C:/Documents/Python/test.txt”, “a+”)
my_file.write (“\nGuava”)

The above code appends the string ‘Apple’ at the end of
the ‘test.txt’ file in a new line.

f l u s h () function

• When we write any data to file, python hold
everything in buffer (temporary memory) and
pushes it onto actual file later. If you want to
force Python to write the content of buffer
onto storage, you can use flush() function.

• Python automatically flushes the files when
closing them i.e. it will be implicitly called by
the close(), BUT if you want to flush before
closing any file you can use flush()

f l u s h () f u n c t i o n … . cont . .1

E x a m p l e : w o r k i n g o f f l u s h ()

Without flush()

When you run the above code, program will

stopped at “Press any key”, for time being

don’t press any key and go to folder where file

“temp.txt” is created an open it to see what is in

the file till now

Nothing is

in the file

temp.txt

NOW PRESSANY KEY….
Now content is stored,

because of close() function
contents are flushed and

pushed infile

f l u s h () f u n c t i o n … . cont . .2
E x a m p l e : w o r k i n g o f f l u s h ()

With flush()

When you run the above code, program will

stopped at “Press any key”, for time being don’t

press any key and go to folder where file

“temp.txt” is created an open it to see what is in

the file till now

All contents
before flush()
are present in

file

NOW PRESSANY KEY….

Rest of the content is
written because of close(),
contents are flushed and

pushed in file.

R e m o v i n g w h i t e s p a c e s a f t e r
r e a d i n g f r o m f i l e
• read() and readline() reads data from file and

return it in the form of string and readlines()
returns data in the form of list.

• All these read function also read leading and
trailing whitespaces, new line characters. If you
want to remove these characters you can use
functions
– strip() : removes the given character from both ends.

– lstrip(): removes given character from left end

– rstrip(): removes given character from right end

R e m o v i n g w h i t e s p a c e s a f t e r
r e a d i n g f r o m f i l e c o n t … 1

• Example: strip(), lstrip(), rstrip()

F i l e P o i n t e r

• Every file maintains a file pointer which tells
the current position in the file where reading
and writing operation will take.

• When we perform any read/write operation
two things happens:

– The operation at the current position of file
pointer

– File pointer advances by the specified number of
bytes.

F i l e P o i n t e r c o n t … 1
E x a m p l e

myfile = open(“ipl.txt”,”r”)

File pointer will be by default at first position i.e. first character

ch = myfile.read(1

ch will store first character i.e. first character is
consumed, and file pointer will move to next character

B i n a r y f i l e o p e ra t i o n s

• If we want to write a structure such as list or
dictionary to a file and read it subsequently
we need to use the Python module pickle.
Pickling is the process of converting structure
to a byte stream before writing to a file and
while reading the content of file a reverse
process called Unpickling is used to convert
the byte stream back to the original format.

B i n a r y f i l e o p e r a t i o n s c o n t … 1

• First we need to import the module called
pickle.

• This module provides 2 main functions:

– dump() : to write the object in file which is loaded
in binary mode

• Syntax : dump(object_to_write, filehandle)

– load() : dumped data can be read from file using
load() i.e. it is used to read object from pickle file.

• Syntax: object = load(filehandle)

B i n a r y f i l e o p e r a t i o n s c o n t … 2

• Example: dump()

See the content is some kind of
encrypted format, and it is not in

complete readable form

B i n a r y f i l e o p e r a t i o n s c o n t … 3

• Example: load()

B i n a r y f i l e o p e r a t i o n s c o n t … 4

The four major operations performed using a
binary file are—

• 1. Inserting/Appending a record in a binary file

• 2. Reading records from a binary file

• 3. Searching a record in a binary file

• 4. Updating a record in a binary file

B i n a r y f i l e o p e r a t i o n s c o n t … 5

• Inserting/Appending a record in a binary file

• Inserting or adding (appending) a record into a
binary file requires importing pickle module
into a program followed by dump() method to
write onto the file.

B i n a r y f i l e o p e r a t i o n s c o n t … 5 a

• Inserting/Appending a record in a binary file

B i n a r y f i l e o p e r a t i o n s c o n t … 5 b

• Reading a record from a binary file

• deals with reading the contents from binary file
student using load() method of pickle module. It
is used to read the object from the opened file.
The syntax for this is given by the statement—
– object = pickle.load(file)

B i n a r y f i l e o p e r a t i o n s c o n t … 5 c

• Reading a record from a binary file

B i n a r y f i l e o p e r a t i o n s c o n t … 5 d

• Searching a record in a binary file

• Searching the binary file ("student")is carried out on
the basis of the roll number entered by the user. The
file is opened in the read-binary mode and gets stored
in the file object, f. load() method is used to read the
object from the opened file. A variable ‘found’ is used
which will tell the status of the search operation being
successful or unsuccessful. Each record from the file is
read and the content of the field, roll no, is compared
with the roll number to be searched. Upon the search
being successful, appropriate message is displayed to
the user.

B i n a r y f i l e o p e r a t i o n s c o n t … 5 e

• Searching a record in a binary file

B i n a r y f i l e o p e r a t i o n s c o n t … 5 f

• Updating a record in a binary file
• Updating a record in the file requires roll number

(search field) to be fetched from the user whose
name (Record) is to be updated

• Once the record is found, the file pointer is
moved to the beginning of the file using seek(0)
statement, and then the changed values are
written to the file and the record is updated.
seek() method is used for random access to the
file. (more about seek() in later sessions)

B i n a r y f i l e o p e r a t i o n s c o n t … 5 g

• Updating a record in a binary file

B i n a r y f i l e o p e r a t i o n s c o n t … 6

• RANDOM ACCESS IN FILES USING TELL() AND
SEEK()

• Till now, in all our programs we laid stress on the
sequential processing of data in a text and
binary file.

• But files in Python allow random access of the
data as well using built-in methods seek() and
tell().

B i n a r y f i l e o p e r a t i o n s c o n t … 6 a
• RANDOM ACCESS IN FILES USING TELL() AND SEEK()

• seek()—seek() function is used to change the position of the file
handle (file pointer) to a given specific position. File pointer is
like a cursor, which defines from where the data has to be read
or written in the file.

• Python file method seek() sets the file’s current position at the
offset. This argument is optional and defaults to 0, which means
absolute file positioning. Other values are: 1, which signifies seek
is relative (may change) to the current position, and 2, which
means seek is relative to the end of file. There is no return value.

• The reference point is defined by the “from_what” argument. It
can have any of the three values:

• 0: sets the reference point at the beginning of the file, which is by
default.

• 1: sets the reference point at the current file position.
• 2: sets the reference point at the end of the file.

B i n a r y f i l e o p e r a t i o n s c o n t … 6 a _ 1

• RANDOM ACCESS IN FILES USING TELL() AND SEEK()

• seek() can be done in two ways:
– Absolute Positioning
– Relative Positioning

• Absolute referencing using seek() gives the file
number on which the file pointer has to position
itself. The syntax for seek() is—
– f.seek(file_location) #where f is the file pointer

• For example, f.seek(20) will give the position or file
number where the file pointer has been placed. This
statement shall move the file pointer to 20th byte in
the file no matter where you are.

B i n a r y f i l e o p e r a t i o n s c o n t … 6 a _ 2

• RANDOM ACCESS IN FILES USING TELL() AND SEEK()

• Relative referencing/positioning has two arguments,
offset and the position from which it has to traverse. The
syntax for relative referencing is:
– f.seek(offset, from_what) #where f is file pointer, For example,

– f.seek(–10,1) from current position, move 10 bytes backward

– f.seek(10,1) from current position, move 10 bytes forward

– f.seek(–20,1) from current position, move 20 bytes backward

– f.seek(10,0) from beginning of file, move 10 bytes forward

B i n a r y f i l e o p e r a t i o n s c o n t … 6 b

• RANDOM ACCESS IN FILES USING TELL() AND SEEK()

• tell()—tell() returns the current position of the file
read/write pointer within the file. Its syntax is:

• f.tell() #where f is file pointer

• When we open a file in reading/writing mode, the file
pointer rests at 0th byte.

• When we open a file in append mode, the file pointer
rests at the last byte.

• This is illustrated in the practical implementation that
follows:

B i n a r y f i l e o p e r a t i o n s c o n t … 7

• RANDOM ACCESS IN FILES USING TELL() AND SEEK()

CSV File operations in Python
• A CSV file (Comma Separated Values file) is a type of

plain text file that uses specific structuring to arrange
tabular data. Because it’s a plain text file, it can contain
only actual text data—in other words,
printable ASCII or Unicode characters.

• The structure of a CSV file is given away by its name.
Normally, CSV files use a comma to separate each
specific data value. Here’s what that structure looks
like:

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Unicode

CSV File operations in Python Cont…01

• Normally, the first line identifies each piece of data—in other words, the
name of a data column. Every subsequent line after that is actual data
and is limited only by file size constraints.

• In general, the separator character is called a delimiter, and the comma is
not the only one used. Other popular delimiters include the tab (\t), colon
(:) and semi-colon (;) characters. Properly parsing a CSV file requires us to
know which delimiter is being used.

• CSV is a simple flat file in a human readable format which is extensively
used to store tabular data, in a spreadsheet or database. A CSV file stores
tabular data (numbers and text) in plain text.

CSV File operations in Python Cont…02

• Files in the CSV format can be imported to
and exported from programs that store
data in tables, such as Microsoft Excel or
OpenOffice Calc.

• CSV stands for “comma separated values”.
Thus, we can say that a comma separated
file is a delimited text file that uses a
comma to separate values.

Each line in a file is known as data/record. Each record consists of one or more fields,
separated by commas (also known as delimiters), i.e., each of the records is also a part of
this file. Tabular data is stored as text in a CSV file. The use of comma as a field separator is
the source of the name for this file format. It stores our data into a spreadsheet or a
database.

CSV File operations in Python Cont…03

• WHY USE CSV?

• The extensive use of social networking sites and their various associated
applications requires the handling of huge data. But the problem arises as to
how to handle and organize this large unstructured data?

• The solution to the above problem is CSV. Thus, CSV organizes data into a
structured form and, hence, the proper and systematic organization of this
large amount of data is done by CSV. Since CSV file formats are of plain text
format, it makes it very easy for website developers to create applications
that implement CSV.

• the several advantages that are offered by CSV files are as follows:

– CSV is faster to handle.

– CSV is smaller in size.

– CSV is easy to generate and import onto a spreadsheet or database.

– CSV is human readable and easy to edit manually.

– CSV is simple to implement and parse.

– CSV is processed by almost all existing applications.

CSV File operations in Python Cont…04

• For working with CSV files in Python, there is an inbuilt module
called CSV. It is used to read and write tabular data in CSV
format.

• To perform read and write operations with CSV file, we must
import CSV module. CSV module can handle CSV files correctly
regardless of the operating system on which the files were
created.

• Along with this module, open() function is used to open a CSV
file and return file object. We load the module in the usual way
using import:
– >>> import csv

• Like other files (text and binary) in Python, there are two basic operations
that can be carried out on a CSV file:

– 1. Reading from a CSV file

– 2. Writing to a CSV file

CSV File operations in Python Cont…05

• For working with CSV files in Python, there is an inbuilt module
called CSV. It is used to read and write tabular data in CSV
format.

• To perform read and write operations with CSV file, we must
import CSV module. CSV module can handle CSV files correctly
regardless of the operating system on which the files were
created.

• Along with this module, open() function is used to open a CSV
file and return file object. We load the module in the usual way
using import:
– >>> import csv

• Like other files (text and binary) in Python, there are two basic operations
that can be carried out on a CSV file:

– 1. Reading from a CSV file

– 2. Writing to a CSV file

CSV File operations in Python Cont…04

• Reading from a CSV File

• Reading from a CSV file is done using the reader object. The CSV
file is opened as a text file with Python’s built-in open()function,
which returns a file object. This creates a special type of object
to access the CSV file (reader object), using the reader()
function.

• The reader object is an iterable that gives us access to each line
of the CSV file as a list of fields. We can also use next() directly
on it to read the next line of the CSV file, or we can treat it like a
list in a for loop to read all the lines of the file (as lists of the
file’s fields).

• Let us enter the student details in spreadsheet and save this file
as shown.

• Next step is to open the Notepad and enter the data for
student.csv, which will be the equivalent for student.xls.

CSV File operations in Python Cont…04_a

In student.csv (notepad) file, the first line is the header and remaining lines are the data/
records. The fields are separated by comma. In general, the separator character is called a
delimiter, and the comma is not the only one used. Other popular delimiters include the tab
(\t), colon (:) and semi-colon (;) characters.

CSV File operations in Python Cont…04_b
Program to read the contents of “student.csv” file

Every record is stored in reader object in the form of a List. We first
open the CSV file in READ mode. The file object is named f. The file
object is converted to csv.reader object. The reader object is used to
read records as lists from a csv file. Iterate through all the rows using a
for loop. row is nothing but a list containing all the field values

CSV File operations in Python Cont…04_c
Read the contents of “student.csv” file using with open().

Code uses “with open()” function, the only difference being that the
file being opened using with open() gets automatically closed after the
program execution gets over, unlike open() where we need to give
close() statement explicitly.

